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Supplemental Material, Part I: Description of simulation study parameters for urine 

biomarker scenarios (DAGs A-C) 

For the creatinine-related scenarios (Figure 1A-1C) we assumed a multiplicative 

relationship between hydration and urinary creatinine and between hydration and the proxy 

biomarker concentration (EP). Thus, for example, if hydration is doubled, the creatinine 

concentration will be halved, as will the biomarker concentration. Because we wanted to select 

realistic distribution parameters, we generated values for the overall exposure (EO), the target 

tissue concentration (ET), and EP so that EP concentrations would resemble urinary BPA 

concentrations measured in female participants from the 2007-2008 and 2009-2010 NHANES 

(unadjusted geometric means = 1.97 µg/L and 1.73 µg/L, respectively) (Fourth National Report 

on Human Exposure to Environmental Chemicals, 2014) We generated exposures that were log-

normally distributed by randomly drawing values for ln(EO) from a normal distribution and then 

exponentiating them. For DAGs A and B, ln(EO) were drawn from a normal distribution with a 

mean of 1.3 and a standard deviation (std) of 0.3. For DAG C, EO was dependent on X1, with 

ln(EO) randomly drawn from a normal distribution with mean=0.8+0.01*X1 and std=0.3. In the 

DAG, X1 can be thought of as age, a factor that influences both the exposure and creatinine.  

In all scenarios, the exposure concentrations in the target tissue (ET) were lower than 

overall exposure concentrations (EO), but perfectly correlated: ET=0.8*EO. For DAGs A-C, 

hydration levels were generated by exponentiating values randomly drawn from a normal 

distribution (mean= -0.3, std= 0.08, and discarding if not between 0 and 1). This distribution was 

chosen so that hydration was measured as a fraction (mean= 0.74, maximum= 1.0). X1, which we 

can think of as age, was drawn from a normal distribution with mean=50 and std=10, discarding 

values below 18 and above 85.  

 In all scenarios, the proxy exposure concentration (EP) was set to (0.37*EO)/Hydration, 

which produced mean EP of approximately 1.9 (consistent with NHANES). Under scenario A, 

creatinine concentration was simply a function of hydration (creatinine= 0.71/hydration). In 

scenarios B and C, creatinine was dependent on both hydration and X1 (creatinine= (1.21-

0.01*X1)/hydration). Note that at the mean age (50 years), the creatinine distribution is the same 

as it was in the scenario A. In all three scenarios, creatinine-corrected EP values (ratio= 

EP/creatinine) had a distribution similar to that observed for BPA in NHANES. 
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We also considered scenarios in which EP and creatinine were subject to random 

variation due to assay errors. We simulated this by adding random error terms to the equations 

used to generate EP and creatinine. For EP, the error term was normally distributed with mean= 0 

and std= 0.2, and for creatinine the error terms were normally distributed with mean= 0 and std= 

0.05.  

Presence or absence of disease was determined by random draws from a binomial 

distribution, where the ln odds of having disease was dependent on the product of ET and the ln 

odds ratio (OR) of the true effect (βTRUE). We ran 5 sets of simulations, specifying true (target-

tissue based) ORs of 2.00, 1.30, 1.00, 0.77 and 0.50. These correspond to βTRUE values of 0.69, 

0.26, 0, -0.26 and -0.69, respectively.  

In scenarios B and C, X1 also influenced disease risk, with ln OR= 0.05 per unit. If X1 is 

age, this corresponds to an OR of 1.05 for each year increase. We selected intercept terms to 

impose case-control sampling and ensure that approximately 50% of the individuals would be 

cases. 
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Table S1: Variable relationships, urinary biomarker scenarios (A-C) 

Parameter Scenario A Scenario B Scenario C 

EO 

ln(𝐸𝐸𝑂𝑂) ~𝑁𝑁(1.3, 0.32) 
𝜎𝜎𝐸𝐸𝑂𝑂

2 = �𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝐸𝐸𝑂𝑂
2

− 1� �𝑒𝑒2𝜇𝜇𝑙𝑙𝑙𝑙𝐸𝐸𝑂𝑂+𝜎𝜎𝑙𝑙𝑙𝑙𝐸𝐸𝑂𝑂
2

� 
= �𝑒𝑒0.32 − 1��𝑒𝑒2∗1.3+0.32� = 1.39 

𝜎𝜎𝐸𝐸𝑂𝑂 = 1.18 

ln(𝐸𝐸𝑂𝑂) ~𝑁𝑁(1.3, 0.32) 
𝜎𝜎𝐸𝐸𝑂𝑂 = 1.18 

ln(𝐸𝐸𝑂𝑂∗) ~𝑁𝑁(0.8 + 0.01𝐴𝐴, 0.32)  
𝐴𝐴~𝑁𝑁(50,10)† 

𝜎𝜎𝑙𝑙𝑙𝑙𝐸𝐸𝑂𝑂∗ = �0.32 + 0.0129.952 = 0.32 
𝜎𝜎𝐸𝐸𝑂𝑂∗ = 1.25 

ET 0.8*EO 0.8*EO 0.8*EO* 

ETz= 𝑬𝑬𝑻𝑻−𝑬𝑬𝑻𝑻
����

𝝈𝝈𝑬𝑬𝑻𝑻
 

0.8𝐸𝐸𝑂𝑂 − 0.8𝐸𝐸𝑂𝑂����

�0.82𝜎𝜎𝐸𝐸𝑂𝑂2
=
𝐸𝐸𝑂𝑂 − 𝐸𝐸𝑂𝑂����
𝜎𝜎𝐸𝐸𝑂𝑂

 𝐸𝐸𝑂𝑂 − 𝐸𝐸𝑂𝑂����
𝜎𝜎𝐸𝐸𝑂𝑂

 
𝐸𝐸𝑂𝑂∗ − 𝐸𝐸𝑂𝑂∗�����
𝜎𝜎𝐸𝐸𝑂𝑂∗

 

EP (0.37*EO)/H= (0.37*EO*C)/0.71= 
0.52*EO*C 

(0.37*EO)/H=  
(0.37*EO*C)/(1.21-0.01*X1) 
@X1=50: EP= (0.52*EO*C) 

(0.37*EO*)/H=  
(0.37*EO**C)/(1.21-0.01* X1) 
@X1=50: EP= (0.52*EO**C) 

EPz= 𝑬𝑬𝑷𝑷−𝑬𝑬𝑷𝑷
����

𝝈𝝈𝑬𝑬𝑷𝑷
 

0.52𝐸𝐸𝑂𝑂𝐶𝐶 − 0.52𝐸𝐸𝑂𝑂����𝐶𝐶̅

�0.522𝜎𝜎𝐸𝐸𝑂𝑂2𝜎𝜎𝐶𝐶2
=
𝐸𝐸𝑂𝑂𝐶𝐶 − 𝐸𝐸𝑂𝑂����𝐶𝐶̅
𝜎𝜎𝐸𝐸𝑂𝑂𝜎𝜎𝐶𝐶

 𝐸𝐸𝑂𝑂𝐶𝐶 − 𝐸𝐸𝑂𝑂����𝐶𝐶̅
𝜎𝜎𝐸𝐸𝑂𝑂𝜎𝜎𝐶𝐶

 
𝐸𝐸𝑂𝑂∗𝐶𝐶 − 𝐸𝐸𝑂𝑂∗�����𝐶𝐶̅

𝜎𝜎𝐸𝐸𝑂𝑂∗𝜎𝜎𝐶𝐶
 

C 0.71/H (1.21-0.01*X1)/H (1.21-0.01*X1)/H 
ratio (EP/C) 0.52*EO*C / C= 0.52*EO (0.52*EO*C)/C= 0.52*EO (0.52*EO**C)/C= 0.52*EO* 

ratioz= 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓−𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
��������

𝝈𝝈𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
 

0.52𝐸𝐸𝑂𝑂 − 0.52𝐸𝐸𝑂𝑂����

�0.522𝜎𝜎𝐸𝐸𝑂𝑂2
=  
𝐸𝐸𝑂𝑂 − 𝐸𝐸𝑂𝑂����
𝜎𝜎𝐸𝐸𝑂𝑂

 𝐸𝐸𝑂𝑂 − 𝐸𝐸𝑂𝑂����
𝜎𝜎𝐸𝐸𝑂𝑂

 
𝐸𝐸𝑂𝑂∗ − 𝐸𝐸𝑂𝑂∗�����
𝜎𝜎𝐸𝐸𝑂𝑂∗

 

D 

logit(Pr[D])= 𝛽𝛽0 + 𝛽𝛽1E𝑇𝑇  
= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ E𝑂𝑂) 

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑇𝑇𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂 + 𝐸𝐸𝑂𝑂����)) = 
𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑃𝑃𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂𝜎𝜎𝐶𝐶 + 𝐸𝐸𝑂𝑂𝐶𝐶�����)/𝐶𝐶) 
= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (ratio𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂 + 𝐸𝐸𝑂𝑂����)) 

logit(Pr[D])= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ E𝑂𝑂) +
𝛽𝛽2𝑋𝑋1 

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑇𝑇𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂 + 𝐸𝐸𝑂𝑂����))
+ 𝛽𝛽2𝑋𝑋1 

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑃𝑃𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂𝜎𝜎𝐶𝐶 +
𝐸𝐸𝑂𝑂𝐶𝐶�����)/𝐶𝐶) + 𝛽𝛽2𝑋𝑋1  

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (ratio𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂 + 𝐸𝐸𝑂𝑂����))
+ 𝛽𝛽2𝑋𝑋1 

logit(Pr[D])=   𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ E𝑂𝑂∗) +
𝛽𝛽2𝑋𝑋1 

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑇𝑇𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂∗ + 𝐸𝐸𝑂𝑂∗�����))
+ 𝛽𝛽2𝑋𝑋1 

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑃𝑃𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂∗𝜎𝜎𝐶𝐶 +
𝐸𝐸𝑂𝑂∗𝐶𝐶������)/𝐶𝐶) + 𝛽𝛽2𝑋𝑋1  

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (ratio𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂 + 𝐸𝐸𝑂𝑂∗�����))
+ 𝛽𝛽2𝑋𝑋1 

β coefficients E(βETz)= 0.8β1σEo = E(βratioz) 
E(βETz)= 0.8β1σEo = E(βratioz)[with 

adjustment for X1] 
E(βETz)= 0.8β1σEo* = E(βratioz) [with 

adjustment for X1] 
Abbreviations: EO=Overall exposure (alternate definition for DAG C denoted EO*), ET= Target tissue exposure, ETz= Target 
tissue exposure z-score, EP= Proxy biomarker level, EPz= Proxy biomarker z-score, H= Hydration, C= Creatinine, ratioz= z-
score for EP/C, D= Disease 
†X1 truncated at 18 and 85; Mean=50.01; Standard Deviation=9.95 
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Table S2: Results from simulations with measurement error: urinary biomarker scenarios 
(A-C)  

Abbreviations: ETz= Target tissue exposure z-score, EPz= Proxy exposure z-score, CIC=Confidence 
Interval Coverage 
Each simulation was repeated 1,000 times. Samples included 1,000 observations. 
aBias is equal to the mean observed beta coefficient for βPz, which is the beta for EPz (Methods 1, 4, 5), 
ratioz (Methods 2 and 6) or Cratioz (methods 3 and 7), minus the true beta coefficient for ETz. The 
standard deviation of the bias estimate is the square root of the average variance of βPz divided by the 
square root of the number of simulations. 
bScenarios B and C, are adjusted for X1 
cCreatinine levels predicted using X1 (A,B,C) 
*CIC is consistent with 0.95 (0.95±0.0135) 
 

 A B C 

Analysis method Biasa CIC Biasa CIC Biasa CIC 
True OR= 1.3, True β for ETz=0.245 

(A, B), ETz = 0.260 (C)       

1.Unadjusted -0.02 0.93 -0.02 0.94 -0.02 0.94 
2. Standardizedb -0.02 0.93 0.00 0.95* 0.03 0.93 
3. Covariate-adjusted standardization 
(CAS)b,c -0.02 0.93 -0.02 0.94 -0.02 0.95* 

4. Covariate adjustment (CA)b -0.01 0.94* -0.01 0.94* -0.01 0.95* 
5. 2-stage modelb -0.02 0.93 -0.02 0.94* 0.00 0.95* 
6. Standardization plus CAb -0.02 0.93 0.01 0.95* 0.03 0.93 
7. CAS plus CAb,c -0.02 0.93 -0.01 0.94* -0.01 0.95* 

True OR= 0.77, True β for ETz=  
-0.245 (A, B), ETz= -0.260 (C)     

1.Unadjusted 0.02 0.94* 0.02 0.94 0.03 0.93 
2. Standardizedb 0.02 0.94* 0.00 0.95* -0.02 0.96* 
3. CASb,c 0.02 0.94* 0.02 0.94* 0.02 0.94* 
4. CAb 0.01 0.95* 0.01 0.95* 0.02 0.94* 
5. 2-stage modelb 0.02 0.95* 0.02 0.94* 0.00 0.95* 
6. Standardization plus CAb 0.01 0.95* 0.00 0.95* -0.02 0.96* 
7. CAS plus CAb,c 0.01 0.95* 0.01 0.94* 0.02 0.94* 
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Supplemental Material, Part II: Description of simulation study parameters for serum 

biomarker scenarios (DAGs D-F) 

Scenarios D, E, and F (Figures 2D, 2E, and 2F, respectively) were constructed in much 

the same way as A, B, and C, respectively. To simplify things and allow easier comparisons 

between the urine and blood-based examples, we used the same distributions to define EO, EP 

and ET, even though these values were now conceptualized as representing PCB exposure, rather 

than BPA exposure. ET concentrations were again set to 0.8*EO for all DAGs. For DAGs D and 

E, EO concentrations were generated by exponentiating values randomly drawn from a normal 

distribution (with mean= 1.3, std= 0.3).  

 In DAGs D-F, total serum lipid level (SLL) is the sum of two components: adiposity-

related SLL and variable SLL. Adiposity-SLL is positively associated with body size, but stable 

within individuals. In contrast, variable-SLL is easily altered by recent fat intake (RFI). To create 

values for RFI, we randomly drew from a normal distribution with mean= 0.5 and std= 0.2, 

discarding values below 0 or above 1. For DAG D, we generated values for “variable-SLL” 

based on RFI alone (variable-SLL= -0.15+0.8*RFI+ε1), where ε1 was normally distributed with 

mean 0 and std 0.05. “Adiposity-related SLL” was generated by exponentiating random draws 

from a normal distribution (mean= -0.29, std= 0.25). In DAGs E and F, adiposity-related SLL 

was dependent on X2, which can be thought of as BMI. X2 was drawn from a random normal 

distribution with mean= 29 and std= 4.5, truncated to be greater than 16.5 kg/m2. Therefore, at 

the mean BMI (29 kg/m2), the adiposity-SLL distribution is the same as it was in the scenario D. 

Adiposity-related SLL was equal to -0.41+0.04*X2+ε2, where ε2 was normally distributed with 

mean= 0 and std= 0.1. EP was assumed to be a lipophilic chemical and have a multiplicative 

relationship with SLL and EO through the relationship EP=0.5*EO*SLL. Accordingly, if SLL 

doubled, EP would also double. For DAG F, EO also depended on X2. For a given value of X2, ln 

EO was drawn from a normal distribution with mean= -0.154+0.05*X2 and std= 0.3. 

We also considered scenarios in which EP and SLL measurements were subject to 

random variation due to assay errors. We simulated this by adding random error terms to the 

equations used to generate EP and SLL. For EP, the error term was normally distributed with 

mean= 0 and std= 0.2, and for SLL the error terms were normally distributed with mean= 0 and 

std= 0.05.  
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Presence or absence of disease was determined by random draws from a binomial 

distribution, where the ln odds of having disease was dependent on the product of ET and the ln 

odds ratio (OR) of the true effect (βTRUE). We ran 5 sets of simulations, specifying true (target-

tissue based) ORs of 2.00, 1.30, 1.00, 0.77 and 0.50. These correspond to βTRUE values of 0.69, 

0.26, 0, -0.26 and -0.69, respectively.  

In scenarios E and F, X2 affected disease risk with ln OR= 0.10 per unit. If X2 is BMI, 

this corresponds to an OR of 1.11 per kg/m2 increase in BMI. SLL were also associated with 

disease (ln OR= 0.10 per unit). We selected intercept terms to impose case-control sampling and 

ensure that approximately 50% of the individuals would be cases.
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Table S3: Variable relationships, serum biomarker scenarios (D-F) 

Parameter Scenario D Scenario E Scenario F 

EO 

ln(𝐸𝐸𝑂𝑂) ~𝑁𝑁(1.3, 0.32) 
𝜎𝜎𝐸𝐸𝑂𝑂

2 = �𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝐸𝐸𝑂𝑂
2

− 1� �𝑒𝑒2𝜇𝜇𝑙𝑙𝑙𝑙𝐸𝐸𝑂𝑂+𝜎𝜎𝑙𝑙𝑙𝑙𝐸𝐸𝑂𝑂
2

� 

= �𝑒𝑒0.32 − 1��𝑒𝑒2∗1.3+0.32� = 1.39 
𝜎𝜎𝐸𝐸𝑂𝑂 = 1.18 

ln(𝐸𝐸𝑂𝑂) ~𝑁𝑁(1.3, 0.32) 
𝜎𝜎𝐸𝐸𝑂𝑂 = 1.18 

ln(𝐸𝐸𝑂𝑂∗) ~ 𝑁𝑁(−0.154 + 0.05𝐵𝐵, 0.32)  
𝐵𝐵~𝑁𝑁(29,4.5)† 

𝜎𝜎𝑙𝑙𝑙𝑙𝐸𝐸𝑂𝑂∗ = �0.32 + 0.0524.452 = 0.37 
𝜎𝜎𝐸𝐸𝑂𝑂∗ = 1.52 

ET 0.8*EO 0.8*EO 0.8*EO* 

ETz= 𝑬𝑬𝑻𝑻−𝑬𝑬𝑻𝑻
����

𝝈𝝈𝑬𝑬𝑻𝑻
 

0.8𝐸𝐸𝑂𝑂 − 0.8𝐸𝐸𝑂𝑂����

�0.82𝜎𝜎𝐸𝐸𝑂𝑂2
=
𝐸𝐸𝑂𝑂 − 𝐸𝐸𝑂𝑂����
𝜎𝜎𝐸𝐸𝑂𝑂

 𝐸𝐸𝑂𝑂 − 𝐸𝐸𝑂𝑂����
𝜎𝜎𝐸𝐸𝑂𝑂

 
𝐸𝐸𝑂𝑂∗ − 𝐸𝐸𝑂𝑂∗�����
𝜎𝜎𝐸𝐸𝑂𝑂∗

 

EP 0.5*EO*S  0.5*EO*S 0.5*EO**S 

EPz= 𝑬𝑬𝑷𝑷−𝑬𝑬𝑷𝑷
����

𝝈𝝈𝑬𝑬𝑷𝑷
 

0.5E𝑂𝑂S − 0.5E𝑂𝑂����𝑆𝑆̅

�0.552𝜎𝜎𝐸𝐸𝑂𝑂2𝜎𝜎𝑆𝑆2
=

E𝑂𝑂S − E𝑂𝑂����𝑆𝑆̅
𝜎𝜎𝐸𝐸𝑂𝑂𝜎𝜎𝑆𝑆

 E𝑂𝑂S− E𝑂𝑂����𝑆𝑆̅
𝜎𝜎𝐸𝐸𝑂𝑂𝜎𝜎𝑆𝑆

 
E𝑂𝑂∗S− E𝑂𝑂∗�����𝑆𝑆̅
𝜎𝜎𝐸𝐸𝑂𝑂∗𝜎𝜎𝑆𝑆

 

S SA-0.15+0.8*R -0.56+0.04*X2+0.8*R -0.56+0.04*X2+0.8*R 
ratio (EP/S) 0.5*EO 0.5*EO 0.5*EO* 

ratioz=
𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓−𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓��������

𝝈𝝈𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
 

0.5𝐸𝐸𝑂𝑂 − 0.5𝐸𝐸𝑂𝑂����

�0.52𝜎𝜎𝐸𝐸𝑂𝑂2
=  
𝐸𝐸𝑂𝑂 − 𝐸𝐸𝑂𝑂����
𝜎𝜎𝐸𝐸𝑂𝑂

 𝐸𝐸𝑂𝑂 − 𝐸𝐸𝑂𝑂����
𝜎𝜎𝐸𝐸𝑂𝑂

 
𝐸𝐸𝑂𝑂∗ − 𝐸𝐸𝑂𝑂∗�����
𝜎𝜎𝐸𝐸𝑂𝑂∗

 

D 

logit(Pr[D])= 𝛽𝛽0 + 𝛽𝛽1E𝑇𝑇 + 𝛽𝛽2𝑆𝑆𝐴𝐴 
= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ E𝑂𝑂) + 𝛽𝛽2𝑆𝑆𝐴𝐴 

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑇𝑇𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂 + 𝐸𝐸𝑂𝑂����))
+ 𝛽𝛽2𝑆𝑆𝐴𝐴 

=𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑃𝑃𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂𝜎𝜎𝑆𝑆 +
𝐸𝐸𝑂𝑂����𝑆𝑆̅)/𝑆𝑆) +𝛽𝛽2𝑆𝑆𝐴𝐴 

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ ratio𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂 +
𝐸𝐸𝑂𝑂����) + 𝛽𝛽2𝑆𝑆𝐴𝐴 

logit(Pr[D])= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ E𝑂𝑂) +
𝛽𝛽2𝑆𝑆𝐴𝐴 + 𝛽𝛽3𝑋𝑋2 

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑇𝑇𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂 + 𝐸𝐸𝑂𝑂����))
+ 𝛽𝛽2𝑆𝑆𝐴𝐴 + 𝛽𝛽3𝑋𝑋2 

=𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑃𝑃𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂𝜎𝜎𝑆𝑆 +
𝐸𝐸𝑂𝑂����𝑆𝑆̅)/𝑆𝑆) +𝛽𝛽2𝑆𝑆𝐴𝐴+𝛽𝛽3𝑋𝑋2 

= 𝛽𝛽0 + 𝛽𝛽1�0.8 ∗ ratio𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂 + 𝐸𝐸𝑂𝑂����� +
𝛽𝛽2𝑆𝑆𝐴𝐴 + 𝛽𝛽3𝑋𝑋2 

logit(Pr[D])= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ E𝑂𝑂∗) +
𝛽𝛽2𝑆𝑆𝐴𝐴+𝛽𝛽3𝑋𝑋2 

= 𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑇𝑇𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂∗ +
𝐸𝐸𝑂𝑂∗�����)) + 𝛽𝛽2𝑆𝑆𝐴𝐴+𝛽𝛽3𝑋𝑋2 

=𝛽𝛽0 + 𝛽𝛽1(0.8 ∗ (E𝑃𝑃𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂∗𝜎𝜎𝑆𝑆 +
𝐸𝐸𝑂𝑂����𝑆𝑆̅)/𝑆𝑆)+𝛽𝛽2𝑆𝑆𝐴𝐴 + 𝛽𝛽3𝑋𝑋2  

= 𝛽𝛽0 + 𝛽𝛽1�0.8 ∗ ratio𝑇𝑇𝜎𝜎𝐸𝐸𝑂𝑂∗ + 𝐸𝐸𝑂𝑂∗������
+ 𝛽𝛽2𝑆𝑆𝐴𝐴 + 𝛽𝛽3𝑋𝑋2 

β coefficients 
E(βETz)= 0.8β1σEo = E(βratioz) 

[assuming adequate adjustment 
for SA]  

E(βETz)= 0.8β1σEo = E(βratioz) 
[assuming adequate adjustment 

for SA and X2] 

E(βETz)= 0.8β1σEo = E(βratioz) 
[assuming adequate adjustment 

for SA and X2] 
Abbreviations: EO=Overall exposure (alternate definition for DAG F denoted EO*), ET= Target tissue exposure, ETz= Target tissue 
exposure z-score, EP= Proxy biomarker level, EPz= Proxy biomarker z-score, S= Serum lipid level, SV= Variable serum lipid 
level, SA= Adiposity serum lipid level R= Recent fat intake, ratioz= z-score for EP/S, D= Disease 
†X2 truncated to be >16.5; Mean=29.04; Standard Deviation=4.45
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Table S4: Results from simulations with measurement error: serum biomarker scenarios (D-F)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: ETz= Target tissue exposure z-score, EPz= Proxy exposure z-score, CIC=Confidence Interval Coverage 
Each simulation was repeated 1,000 times. Samples included 1,000 observations. 
aBias is equal to the mean observed beta coefficient for βPz, which is the beta for EPz (Methods 1, 4, 5), ratioz (Methods 2 
and 6) or Cratioz (methods 3 and 7), minus the true beta coefficient for ETz. The standard deviation of the bias estimate is 
the square root of the average variance of βPz divided by the square root of the number of simulations. 
bScenarios E and F are adjusted for X2 
cSerum lipid levels predicted using X2 (D,E,F) 
*CIC is consistent with 0.95 (0.95±0.0135) 
 

 D E F 

Analysis method Biasa CIC Biasa CIC Biasa CIC 
True OR = 1.3, True β for ETz= 0.245 (D, E), 

ETz = 0.316 (F)       

1.Unadjusted -0.05 0.87 -0.02 0.94 -0.01 0.95* 
2. Standardizedb -0.02 0.94* -0.02 0.94* -0.03 0.93 
3. Covariate-adjusted standardization (CAS)b,c -0.02 0.94* 0.01 0.94* 0.05 0.94* 
4. Covariate adjustment (CA)b 0.03 0.95* 0.04 0.93 0.06 0.93 
5. 2-stage modelb -0.05 0.88 -0.05 0.90 -0.04 0.93 
6. Standardization plus CAb -0.02 0.95* -0.02 0.94* -0.03 0.94 
7. CAS plus CAb,c -0.02 0.95* 0.01 0.94* 0.05 0.94* 
True OR = 0.77, True β for ETz= -0.245 (D, 

E), ETz = -0.316 (F)    

1.Unadjusted 0.07 0.83 0.03 0.93 0.02 0.95* 
2. Standardizedb 0.02 0.94* 0.02 0.93 0.03 0.93 
3. CASb,c 0.02 0.94* -0.01 0.95* -0.04 0.94* 
4. CAb -0.03 0.94* -0.03 0.93 -0.05 0.93 
5. 2-stage modelb 0.07 0.83 0.07 0.86 0.06 0.90 
6. Standardization plus CAb 0.02 0.95* 0.02 0.93 0.03 0.93 
7. CAS plus CAb,c 0.02 0.95* -0.01 0.95* -0.04 0.94* 
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Supplemental Material, Part III: SAS coding example for implementation of covariate-

adjusted standardization method  

(also at: http://www.niehs.nih.gov/research/resources/software/biostatistics/covariate/index.cfm) 

For urinary biomarker analyses where creatinine has been measured at the same time as 

the biomarker of interest, the covariate-adjusted standardization plus creatinine covariate-

adjustment approach performed well. To implement this approach, we first modeled the 

relationship between log creatinine (logC) and factors known to influence creatinine (e.g. age) 

using linear regression. This estimates the quantity of creatinine attributable to known factors. 

The ‘OUTPUT’ statement is used to save the predicted log creatinine values (plogC) in the 

‘pred’ file. 

DATA data; 
SET data; 

 logC=log(C); 
RUN; 
 
PROC REG data=data; 
 MODEL logC=age; 
 OUTPUT out=pred p=plogC; 
RUN; 
 

 Because the predicted value accounts for known determinants of creatinine, division of 

the measured contaminant concentration (E) by the creatinine ratio (observed divided by 

predicted creatinine) should, theoretically, produce an error-corrected measure of the individual’s 

exposure level attributable to hydration alone. This is useful because hydration also directly 

affects the contaminant of interest. Note that we have to exponentiate the predicted log creatinine 

value to get the predicted creatinine value before calculating the covariate-adjusted exposure 

value (here E_crt). 

DATA data; 
 MERGE data pred; 
 BY ID; *files should be sorted by ID; 
 pC=exp(plogC); 
 Cratio=C/pC; 
 E_crt=E/Cratio; 
RUN; 
 

 We can still include creatinine (C) as a covariate in the exposure-outcome regression 

model to control residual confounding. The adjustment model should include the covariates that 
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affect creatinine in addition to any other confounders. These other confounders are denoted Z1 

and Z2. The outcome is disease (D).  

PROC LOGISTIC data=data DESC; 
MODEL D= E_crt age Z1 Z2 C; 

RUN; 
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